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Abstract. The analysis in nonlinear variational data assimi-
lation is the solution of a non-quadratic minimization. Thus,
the analysis efficiency relies on its ability to locate a global
minimum of the cost function. If this minimization uses a
Gauss–Newton (GN) method, it is critical for the starting
point to be in the attraction basin of a global minimum. Oth-
erwise the method may converge to a local extremum, which
degrades the analysis. With chaotic models, the number of
local extrema often increases with the temporal extent of
the data assimilation window, making the former condition
harder to satisfy. This is unfortunate because the assimila-
tion performance also increases with this temporal extent.
However, a quasi-static (QS) minimization may overcome
these local extrema. It accomplishes this by gradually inject-
ing the observations in the cost function. This method was
introduced by Pires et al. (1996) in a 4D-Var context.

We generalize this approach to four-dimensional strong-
constraint nonlinear ensemble variational (EnVar) methods,
which are based on both a nonlinear variational analysis and
the propagation of dynamical error statistics via an ensemble.
This forces one to consider the cost function minimizations
in the broader context of cycled data assimilation algorithms.
We adapt this QS approach to the iterative ensemble Kalman
smoother (IEnKS), an exemplar of nonlinear deterministic
four-dimensional EnVar methods. Using low-order models,
we quantify the positive impact of the QS approach on the
IEnKS, especially for long data assimilation windows. We
also examine the computational cost of QS implementations
and suggest cheaper algorithms.

1 Introduction

1.1 Context

Data assimilation (DA) aims at gathering knowledge about
the state of a system from acquired observations. In the
Bayesian framework, this knowledge is represented by the
posterior probability density function (pdf) of the system
state given the observations. A specificity of sequential DA
is that observations are not directly available; they become
available as time goes by. Thus, the posterior pdf should be
regularly updated.

In order to do so, one usually proceeds in two steps: the
analysis and the propagation (or forecast). During the analy-
sis step, a background pdf is used as a prior together with the
observation likelihood to construct the (often approximate)
posterior pdf, following Bayes’ theorem. During the propa-
gation step, this posterior pdf is propagated in time with the
model to yield the prior pdf of the next assimilation cycle.

In general these posterior and prior pdfs are not easily
computable. In the Kalman filter, assumptions are notably
made on the linearity of operators, to keep these pdfs Gaus-
sian; this way, they are characterized by their mean and co-
variance matrix. Linear algebra is then sufficient to enforce
both Bayes’ theorem and the propagation step into operations
on means and covariances.

However, with nonlinear models, the Kalman filter as-
sumptions do not hold as the posterior and prior pdfs are not
Gaussian anymore. A possibility in this case is to enforce
Gaussianity with approximations. This requires the selection
of mean and covariances intended for the Gaussian surrogate
pdfs. With the Kullback–Leibler divergence, the best Gaus-
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sian approximation of a pdf is achieved by equating the mean
and covariances (see, e.g., Bishop, 2006). However, the inte-
grations necessary to evaluate these moments are also pro-
hibitive.

In the 4D-Var algorithm (see, e.g., Lorenc, 2014, and ref-
erences therein), the Laplace approximation gives us a way
to work around the problem by replacing the posterior mean
with the presumed unique minimizer of the cost function
over all input values. A model propagation is then sufficient
to estimate the prior pdf mean. This global approach calls
for efficient global optimization routines. However, in prac-
tice, solving a global optimization problem is challenging
when the number of unknowns is large, and local methods fo-
cused on finding a minimizer over an open subset like Gauss–
Newton are often preferred (see, e.g., Björck, 1996).

Unfortunately, the Gauss–Newton method’s ability to lo-
cate the global minimum depends on the minimization start-
ing point and the cost function properties. Furthermore, miss-
ing this global minimum is likely to cause a quick divergence
(from the truth) of the sequential DA method. Thus, it is crit-
ical for the assimilation algorithm to keep the minimization
starting point in a global minimum basin of attraction.

1.2 Quasi-static variational data assimilation

Keeping the minimization starting point in a global minimum
basin of attraction is constraining because, with a chaotic
model, the number of local minima may increase exponen-
tially with the data assimilation window (DAW) time extent
L (Pires et al., 1996; Swanson et al., 1998). Unfortunately,
assuming a perfect, chaotic – and hence unstable – model,
the assimilation performs best for the longest time extents.
Several strategies have been investigated to go beyond this
restriction. Pires et al. (1996) propose the quasi-static (QS)
minimization in a 4D-Var context: as the observations are
progressively added to the cost function, the starting point
(or first guess) of the 4D-Var minimization is also gradually
updated. This led to the method known as QSVA for quasi-
static variational assimilation. Ye et al. (2015) propose the
gradual increase of the model error covariances in the weak-
constraint 4D-Var cost function in a minimization over an
entire trajectory; this way the model nonlinearity is gradually
introduced into the cost function (see also Judd et al., 2004).
They also propose to parallelize this minimization over mul-
tiple starting points to increase the chance to locate the global
minimum.

On the one hand, 4D-Var benefits from the QS approach
to approximate the posterior and prior means. On the other
hand, with traditional 4D-Var, the prior covariance matrix
is taken as static. This is appropriate when only one cycle
of assimilation is considered. But this limits the dynamical
transfer of error statistics from one cycle to the next, for in-
stance when Pires et al. (1996) propose gradually moving
their fixed-lag data assimilation window in order to build a
sequential QSVA.

1.3 Ensemble variational methods

By contrast, four-dimensional ensemble variational (EnVar)
schemes allow one to perform both a nonlinear variational
analysis and a propagation of dynamical errors via the en-
semble (see chap. 7 of Asch et al., 2016). The improvement
brought by QS minimizations to these schemes has been
suggested and numerically evaluated in Bocquet and Sakov
(2013, 2014) and Goodliff et al. (2015). This motivates a
more complete analytical and numerical investigation.

The iterative ensemble Kalman smoother (IEnKS) (Boc-
quet and Sakov, 2014; Bocquet, 2016) is the archetype of
such a four-dimensional nonlinear EnVar scheme, where
the ensemble parts of the algorithm are deterministic. Us-
ing low-order models (usually toy-models), it was shown to
significantly outperform 4D-Var, the EnKF or the ensemble
Kalman smoother in terms of accuracy.

The IEnKS improves the DA cycling by keeping track of
the pdfs’ mean and covariance matrix. To do this, a Laplace
approximation is used to replace the posterior mean and co-
variance matrix with the minimizer of the cost function and
an approximation of the inverse Hessian at the minimizer,
respectively. These moments are then used to update the en-
semble statistics. The updated ensemble is next propagated
to estimate the prior mean and covariance matrix. Hence, it
is also critical for the IEnKS to locate the global minimum
of the cost function.

Here, we are interested in the application of the QS min-
imization to the IEnKS. One of the variant of the IEnKS
called the multiple data assimilation (MDA) IEnKS was
shown (Bocquet and Sakov, 2014) to be quasi-static by de-
sign and can be seen as the EnVar generalization of the se-
quential QSVA by Pires et al. (1996). It was first tested in
Bocquet and Sakov (2013). However, the MDA IEnKS is a
specific variant of the IEnKS whereas we see here the IEnKS
as an exemplar of deterministic nonlinear 4D EnVar meth-
ods.

Goodliff et al. (2015) have applied QSVA numerically to
a collection of hybrid and EnVar techniques on the Lorenz
1963 model (Lorenz, 1963), where they vary the magnitude
of nonlinearity. Nonetheless the focus of their study was not
cycling and the transfer of information from one cycle to the
next, which is critical to EnVar methods. They also showed
that the ensemble transform Kalman smoother outperforms
all of the benchmarked methods. We have furthermore shown
that this smoother was systematically outperformed by the
IEnKS by design, which was also demonstrated on numerics
(Bocquet and Sakov, 2013). This strengthens our claim that
the IEnKS can be used here as an exemplar of deterministic
nonlinear 4D EnVar methods.

1.4 Outline

The rest of the paper is organized as follows. In Sect. 2, the
performance dependency of 4D-Var and IEnKS algorithms
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on the DAW parameters is investigated. The emphasis is on
the transfer of information from one cycle to next, which
distinguishes the IEnKS from 4D-Var. In order to do this,
a brief presentation of 4D-Var and the IEnKS algorithms is
given. We then define a measure of performance for assimi-
lation algorithms. This definition is used to give analytic ex-
pressions for the accuracy of both algorithms with a linear,
diagonal, autonomous model. This quantifies the impact of
cycling on the algorithms. After these preliminaries, the non-
linear, chaotic case is studied. In Sect. 3, we provide and de-
scribe the algorithms of the quasi-static IEnKS (IEnKSQS).
Section 4 is dedicated to numerical experiments with two
Lorenz low-order models and to the improvement of the nu-
merical efficiency. Conclusions are given in Sect. 5.

We emphasize that the algorithmic developments of this
study are not meant to improve either high-dimensional or
imperfect model data assimilation techniques. Even if Miller
et al. (1994) show some similarities between the perfect and
imperfect settings of a model of intermediate complexity,
model error would generally forbid the use of very long
DAWs as sometimes considered in this study. Instead, the
objective of this paper is to better understand the interplay
between chaotic dynamics, ensemble variational data assimi-
lation schemes and their cycling, irrespective of whether they
could be useful in high-dimensional systems.

2 The data assimilation window and assimilation
performance

After reviewing 4D-Var (in a constant background matrix
version) and the IEnKS algorithms, we investigate the de-
pendency of assimilation performance on the DAW key pa-
rameters. This illustrates the cycling improvement brought
in by the IEnKS compared to 4D-Var. We will see that, with
chaotic models, the longer the DAW is, the better the accu-
racy of these algorithms. Which highlights the QSVA rele-
vance for cycled data assimilation.

The evolution and observation equations of the system are
assumed to be in the following form:

yl =H (xl)+ εl, (1a)
xl+1 =M(xl) , (1b)

where the unknown state xl at time tl is propagated to tl+1
with the model resolvent M : Rm→ Rm. The model is as-
sumed to be perfect (no errors in Eq. (1b)) and autonomous
(M does not depend on time). The observation operator
H : Rm→ Rd relates the state xl to the observation vector
yl . The observation errors (εl)l≥ 0 are assumed to be Gaus-
sian with mean 0 ∈ Rd and covariance matrix R ∈ Rd×d ;
they are uncorrelated in time.

t0

x0

tK

yK

tL

yL

L

S observations

Figure 1. Schematic of a DAW. The state variable at t0 is x0, the
observation vector yK at time tK is the first of the DAW to be as-
similated and the observation yL at present time tL is the last to be
assimilated. These observations, possibly observation vectors, are
represented by black dots.

2.1 4D-Var and IEnKS algorithms

Both 4D-Var and the IEnKS use a variational minimiza-
tion in their analysis step. The objective of this minimiza-
tion is to locate the global maximum of the posterior pdf
p
(
x0|yL:K

)
of the system past state x0 given the observa-

tions yL:K =
[
yK , . . .,yL

]
at times tL:K = [tK , . . ., tL] ∈ RS .

The system state and observations are seen as random vec-
tors with values in Rm and Rd , respectively. The posterior
pdf quantifies how our knowledge on the state x0 changes
with realizations of yL:K . Thus, its maximum is the most
probable state after assimilating the observations. The DAW
is displayed in Fig. 1. The parameters K and L are the time
index of the DAW first and last assimilated observation batch,
respectively. The number of observation vectors used within
the DAW is L−K + 1.

To specify this posterior pdf, we have to make further as-
sumptions on x0.

The initial state x0 is assumed to be Gaussian with mean
xb

0 ∈ Rm and covariance matrix B ∈ Rm×m:

p(x0)=N
(
x0|x

b
0,B

)
. (2)

Following these assumptions, an analytic expression can
be obtained for the posterior smoothing pdf p

(
x0|yL:K

)
at

the first cycle, or for the cost function associated with this
pdf. The latter is defined as

G
(
x0|yL:K

)
=− lnp

(
x0|yL:K

)
. (3)

The notation G is used rather than the traditional J to refer
to an exact cost function, i.e., a cost function defined from an
exact posterior pdf. Bayes’ theorem consequently yields the
following:

G
(
x0|yL:K

)
= − lnp(x0)− lnp

(
yL:K |x0

)
+ lnp

(
yL:K

)
, (4)

and with the Gaussian assumption applied to the background
and observation errors we find
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G
(
x0|yL:K

)
=

1
2

∥∥∥xb
0− x0

∥∥∥2

B−1
+ c0

+
1
2

L∑
l=K

∥∥∥yl −H ◦Ml (x0)

∥∥∥2

R−1
, (5)

where ‖x‖2A = xTAx is the norm of x associated with a sym-
metric positive definite matrix A; c0 is a normalization con-
stant ensuring

∫
e−G(x0|yL:K)dx0 = 1; Ml stands for l com-

positions ofM.
The propagation corresponds to a time shift of S time

steps. Thus, at the kth assimilation cycle, the posterior pdf
is p

(
xkS |ykS+L:K

)
. Using Bayes’ theorem the kth cycle cost

function is

G
(
xkS |ykS+L:K

)
=− lnp

(
xkS |y(k−1)S+L:K

)
+

1
2

L∑
l=K

∥∥∥ykS+l −H ◦Ml (xkS)

∥∥∥2

R−1
+ ckS, (6)

where − lnp
(
xkS |y(k−1)S+L:K

)
is the background term. If

the model and observation operators are nonlinear, an analyt-
ical expression for this prior is not accessible and one needs
to approximate it. The 4D-Var and the IEnKS algorithms are
solutions based on distinct approximation strategies.

The 4D-Var cost function at the kth cycle, based on the
static error covariance matrix B, is defined by

J
(
xkS;ykS+L:kS+K ,x

b
kS

)
=

1
2

∥∥∥xb
kS − xkS

∥∥∥2

B−1

+
1
2

L∑
l=K

∥∥∥ykS+l −H ◦Ml (xkS)

∥∥∥2

R−1
. (7)

The analysis of 4D-Var consists in by minimizing Eq. (7),
yielding xa

kS at tkS . Because this cost function depends on re-
alizations of the random observations, xa

kS is also a random
variable. This analysis is then propagated at time t(k+1)S with
the resolvent of the model to produce the next cycle back-
ground state:

xb
(k+1)S =MS

(
xa
kS

)
. (8)

In general, G
(
x0|yL:K

)
and J

(
x0;yL:K ,x

b
0
)

only coin-
cide at the first cycle of an assimilation because of the
assumption outlined by Eq. (2). Subsequently, the back-
ground term of the 4D-Var cost function 1

2

∥∥xb
kS − xkS

∥∥2
B−1

is a Gaussian approximation of the exact background term
− lnp

(
xkS |y(k−1)S+L:K

)
. By definition, the background er-

ror covariance matrix B of the traditional 4D-Var cost func-
tion is the same for each cycle – this is not the case for the
IEnKS.

The IEnKS (Bocquet and Sakov, 2014) is an ensemble
method with a variational analysis. Two versions of the al-
gorithm exist: the singular data assimilation (SDA) version

where observations are assimilated only once, and the multi-
ple data assimilation (MDA) version where they are assimi-
lated several times. We focus on the SDA version in the the-
oretical development. The MDA version, which can be seen
as the first published quasi-static EnVar scheme is used in
the numerical experiments for comparison. Note that, for the
SDA IEnKS, the number of observations is L−K + 1= S.

At the kth cycle of the IEnKS, the background ensemble at
tkS is obtained by a propagation from the previous cycle. The
ensemble members are the columns of the matrix Eb

kS , which
is seen as a random matrix with values in Rm×n. It is used to
estimate the prior mean and covariance matrix as follows:

E
[
xkS |y(k−1)S+L:K

]
' xb

kS, (9)

C
[
xkS |y(k−1)S+L:K

]
' Xb

kSXbT
kS , (10)

where E and C are the expectation and covariance operators,
respectively; xb

kS and Xb
kS are the empirical mean and nor-

malized anomaly of Eb
kS , respectively:

xb
kS = Eb

kS

1n
n
, (11)

Xb
kS = Eb

kS

In−
1n1T

n

n
√
n− 1

, (12)

with 1n = [1, . . .,1]T
∈ Rn a vector of ones and In is the iden-

tity of Rn. Note that Eqs. (9) and (10) are approximations
because of sampling errors. If the state vector is of the form

xkS = xb
kS +Xb

kSwkS, (13)

with wkS ∈ Rn the control variable in the ensemble space,
the IEnKS cost function is defined in the ensemble space by

J
(
wkS;ykS+L:kS+K ,E

b
kS

)
=

1
2
‖wkS‖

2

+
1
2

L∑
l=K

∥∥∥ykS+l −H ◦Ml
(
xb
kS +Xb

kSwkS

)∥∥∥2

R−1
, (14)

where ‖·‖ = ‖·‖I with I the identity matrix. The analysis of
the IEnKS consists in minimizing this cost function. It yields
an updated ensemble Ea

kS at time tkS verifying

xa
kS = xb

kS +Xb
kSw

a
kS, (15)

Xa
kS = Xb

kS

[
∇

2J
(
wa
kS;ykS+L:kS+K ,E

b
kS

)]−1/2
U, (16)

with xa
kS and Xa

kS representing the empirical mean
and normalized anomalies of the analyzed ensem-
ble, respectively, wa

kS the cost function minimizer,
∇

2J
(
wa
kS;ykS+L:kS+K ,E

b
kS

)
its Hessian at this mini-

mum usually approximated in the Gauss–Newton method
by

∇
2J
(
wa
kS;ykS+L:kS+K ,E

b
kS

)
' In+

L∑
l=K

FT
l R−1Fl, (17)
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Analysis

Propagation

Analysis

xb
0 ,Eb

0

xa
0,E

a
0

yK yL

xb
S ,Eb

S

xa
S ,Ea

S

yK+S yL+S

M
S:0

Figure 2. Chaining of the 4D-Var and IEnKS first two cycles with
S = 3,L= 4. The first 4D-Var analysis uses the background xb

0 at t0
and the observations yL:K to give the analysis xa

0 at t0. It is prop-
agated S steps forward in time to produce the new background at
time tS where another analysis can be performed. The IEnKS does
the same but with an ensemble. The dashed rectangle symbolizes
the current DAW, black dots represent the observations assimilated
in the current cycle, gray dots represent already assimilated obser-
vations and white dots represent observations not assimilated.

with Fl = dFl
dwkS

(
wa
kS

)
, where Fl : wkS 7−→H ◦

Ml
(
xb
kS +Xb

kSwkS

)
, in order to avoid computing the

model second derivatives. The exponent −1/2 refers to
the unique symmetric definite positive inverse square root
of a symmetric definite positive matrix and U ∈ Rn×n
an orthogonal matrix such that U1n = 1n. This analyzed
ensemble is also propagated to time t(k+1)S to produce the
next cycle background ensemble

Eb
(k+1)S =MS

(
Ea
kS

)
. (18)

The cycle is completed by using the cost function Eq. (14)
with time indexes incremented by S in the next analysis. 4D-
Var and the IEnKS are displayed in Fig. 2.

2.2 Performance of assimilation

In order to evaluate the efficiency of 4D-Var and the IEnKS
with DAW parameters S and L, two measures of accuracy
are investigated here: the usual empirical RMSE, and a theo-
retical counterpart.

At the kth cycle, the algorithm generates at time tkS an
analysis xa

kS from the observations. This analysis is prop-
agated with the model l steps forward in time to yield the
analysis xa

kS+l meant to approximate the system’s true state
xkS+l . A traditional measure of assimilation performance is
the root mean square error (RMSE). It is defined by

RMSE=
1
√
m

∥∥xkS+l − xa
kS+l

∥∥ . (19)

The RMSE takes different names depending on when it is
computed. If l = L, it is called the filtering RMSE; if 0≤
l ≤ L− 1, it is the smoothing RMSE with lag L− l. In the
following, the smoothing RMSE will correspond to the one
with (maximum) lag L.

The RMSE rigorously depends on the random variable re-
alizations, and thus it is also a random variable. In our nu-
merical experiments, as is usually the case, the RMSE is av-
eraged over the cycles to mitigate this variability:

aRMSEN =
1
N

N−1∑
k= 0

1
√
m

∥∥xkS+l − xa
kS+l

∥∥ . (20)

Let us assume that there is a random couple
(
x∞S+l,x

a
∞S+l

)
whose distribution is invariant and ergodic with respect to the
shift transformation:

T :
(
xkS+l,x

a
kS+l

)
7−→

(
x(k+1)S+l,x

a
(k+1)S+l

)
. (21)

Then by Birkhoff’s ergodic theorem (see Walters, 1982) the
sequence (aRMSEN )N converges whenN→∞ and its limit
aRMSE verifies

aRMSE=
1
√
m

E
[∥∥x∞S+l − xa

∞S+l

∥∥] , (22)

where the expectation E is taken over p
(
x∞S+l,x

a
∞S+l

)
. In

this case, the aRMSE measures the long-term impact of the
cycling on the assimilation accuracy. This limit is difficult to
exploit algebraically. That is why, in the theoretical develop-
ments, we prefer the expected MSE (eMSE), denoted by P
as follows:

PkS+l = E
[∥∥xkS+l − xa

kS+l

∥∥2
]
,

where the expectation is taken over p
(
xkS+l,x

a
kS+l

)
. In the

following subsection, we will focus on the long term impact
of the cycling on P . Simplifying assumptions will be made
to express P∞S+l = lim

k→∞
PkS+l as a function of S and L.

2.3 Performance in the linear, diagonal, autonomous
case

In order to obtain analytical expressions of the eMSE for
4D-Var and the IEnKS, we make drastic simplifying assump-
tions.

First, the model is assumed to be the resolvent of a linear,
diagonal, autonomous ordinary differential equation. Thus, it
can be expressed as

Ml (x+ δx)=Ml (x)+Mlδx, (23)

where M= diag(αi)i=1..m is diagonal and does not depend
on x. We further assumeH= hIm, B= bIm, R= rIm, where
Im is the identity matrix of Rm and h,r,b > 0. With these as-
sumptions, Appendix A provides an expression for the 4D-
Var asymptotic eMSE in the univariate case. The generaliza-
tion to the diagonal multivariate case is obtained by summing
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up the eMSEs of each direction:

P 4D-Var
∞S+l =

m∑
i=1


∞ if 1i ≥ 1
b26LK,i

α
2(S−l)
i

1i

1−1i
otherwise , (24a)

6LK,i =
h2

r

α
2(L+1)
i −α2K

i

α2
i − 1

, (24b)

1i =
α2S
i(

1+ b6LK,i
)2 . (24c)

The case 1i ≥ 1 means that too much credit is given to the
background variance, which is approximated for all cycles by
the constant b in our 4D-Var scheme. Therefore, the informa-
tion carried by the observations is not sufficient to mitigate
the exponential growth of errors in the propagation.

Concerning the IEnKS, the anomalies are assumed to be
full rank to avoid any complication due to singular covari-
ance matrices. Moreover, the linearity of the model is em-
ployed to express the background statistics:

xb
(k+1)S =MS

(
xa
kS

)
, (25a)

Xb
(k+1)S =MSXa

kS, (25b)

xb
0 = xb

0, (25c)

Xb
0 = B1/2. (25d)

This way, sampling errors are avoided as they are not the fo-
cus of this study. The background ensemble Eb

kS becomes
a notational shortcut for the pair

(
xb
kS,X

b
kS

)
. This simpli-

fied IEnKS is actually a Kalman smoother (Cosme et al.,
2012; Bocquet and Carrassi, 2017). With these assumptions,
Appendix B gives an expression for the IEnKS asymptotic
eMSE in the univariate case. The optimality of the IEnKS
eMSE is also proven. The generalization to the diagonal mul-
tivariate case is also obtained by summing up the eMSEs of
each direction:

P IEnKS
∞S+l =

m∑
i=1

0 if |αi | ≤ 1
r

h2α
2(L−l)
i

α2
i −1
α2
i

otherwise
. (26)

This expression shows that the eMSE components on the sta-
ble directions are null. Indeed one expects the IEnKS to be
at least more efficient than a free-run, whose errors in the
stable directions tend to zero.1 This is not the case for 4D-
Var since the static background covariance matrix introduces
spurious variance in the stable directions as seen in Eq. (24).
In Trevisan et al. (2010), 4D-Var error variances in the stable
directions are forced to zero to improve the accuracy of the
assimilation.

1The fact that the errors lie in the unstable subspace is more
general. (Bocquet and Carrassi, 2017)

In the following, we study the eMSE dependency on the
DAW parameters, S and L, for both algorithms. We focus
on a bivariate case with α1 = 1.2, α2 = 0.8 in order to have
one stable and one unstable direction; h= b = r = 1. Using
Eqs. (24) and (26), the asymptotic smoothing and filtering
eMSEs are displayed as a function of L, S (Fig. 3). The
eMSE components on the stable and unstable directions are
also shown. Those graphs are interpreted in the following.

Specifically, the eMSE expression for the IEnKS is of the
form

P IEnKS
∞S+l = c1α

2(l−L)
1 , (27)

where c1 does not depend on S,L, l. The contribution to
P IEnKS
∞S+l on the stable direction is zero. It depends only on

the lag L− l; it does not depend on S. Moreover, the filtering
eMSE (l = L) is constant: the propagation compensates for
the analysis. The smoothing eMSE (l = 0) decreases expo-
nentially with L.

Concerning 4D-Var, we assumeK to be fixed and S→∞
to give an asymptotic eMSE expression:

P 4D-Var
∞S+l = P

IEnKS
∞S+l (1+ o(1))+ c2α

2l
2 (1+ o(1)) , (28)

where c2 is constant with S, l and o(1)→ 0 when S→∞.
The unstable component is close to the IEnKS overall eMSE.
The biggest difference with it concerns the eMSE on the sta-
ble component. The inexact background variance modeling
adds a detrimental term to the eMSE.

To qualify the long term impact of the cycling on the er-
rors, the filtering eMSE is more instructive than the smooth-
ing eMSE. Indeed, the smoothing eMSE is improved with
L as it adds future observations (with respect to the analy-
sis time) in the DAW. This improvement dominates the po-
tentially detrimental impact of the Gaussian background ap-
proximations. In the filtering eMSE, this improvement is bal-
anced by the propagation of the analysis at the end of the
DAW. In Fig. 3, the filtering eMSE stable component is mit-
igated such that it has little effect. However, the parameter S
improves the filtering eMSE on the unstable component. The
bigger S becomes, the closer P 4D-Var

∞S+l is to P IEnKS
∞S+l , which is

optimal (cf. Appendix B). A qualitative explanation is that to
assimilate the same numbers of observations, a 4D-Var using
high values of S needs fewer cycles; therefore, it less often
relies on the background approximation, making the analysis
more trustworthy.

Figure 4 displays the asymptotic eMSEs of both algo-
rithms as a function of the lag for S = L= 5;

these curves are similar to those of Trevisan et al. (2010).
Concerning 4D-Var, the eMSE can be written as a function
of the lag L− l as follows:

P 4D-Var
∞S+l ' c1α

−2lag
1 + c2α

2(L−lag)
2 . (29)

Thus, the unstable component of the eMSE is an exponen-
tially decreasing function of the lag and the stable component
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(a) All components (b) All components

Stable component Stable component

Unstable component Unstable component

Figure 3. The asymptotic smoothing (a) and filtering (b) eMSEs of 4D-Var and the IEnKS. eMSEs are displayed as functions of L,S with
their components on the stable and unstable subspaces. The L parameter is on the abscissa axis for 4D-Var and on the ordinate axis for the
IEnKS. The S parameter is on the abscissa axis for the IEnKS and on the ordinate axis for 4D-Var.

is an exponentially increasing function of the lag. The sum
therefore decreases when the unstable component is domi-
nant and increases when the stable component is dominant.

In this section, we studied the accuracy of both the cy-
cled IEnKS and 4D-Var eMSEs as a function of the DAW
parameters under linear, autonomous, diagonal assumptions.
We found that the DAW parameterL improves the smoothing
eMSE and S improves the filtering eMSE. These properties
will be discussed and numerically investigated in a nonlinear
context in the next section.

2.4 Performance in the nonlinear, chaotic case

The results of Sect. 2.3 foster the use of the largest possi-
ble L to improve the 4D-Var and IEnKS smoothing eMSEs.
For filtering, the error propagation at the end of the DAW

balances the gain in eMSE due to the assimilation of fu-
ture observations. Thus, the filtering eMSE is not improved
by the assimilation of observations distant in time; it is af-
fected by the background pdf approximation. To assimilate
the same number of observations, algorithms using high val-
ues of S need fewer cycles. Therefore, they less often rely on
the background approximation. That is why the 4D-Var fil-
tering performance is improved with S. For the IEnKS as in
Sect. 2.3, the prior pdf approximation is exact so that there is
no dependence on S. This is no longer true in the nonlinear
case. Hence, with a similar reasoning, one actually expects
an improvement on the IEnKS filtering performance with S.
As a matter of fact, it has been shown that with a nonlin-
ear chaotic model, the filtering accuracy increases with L in
most cases (see Bocquet and Sakov, 2014, and Sect. 4 of the
present paper).
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Lag

v
v
v

Figure 4. The asymptotic eMSEs as a function of the lag (lag= 0
is the filtering performance and lag= L is the smoothing perfor-
mance). The superposing curves have been slightly translated for
better readability, S = L= 5, h= b = r = 1.

2.4.1 Multiple local minima

However, with a chaotic model, Pires et al. (1996) show that
the 4D-Var cost function number of local extrema increases
with L, making minimization problematic. We show in this
section that the IEnKS cost function suffers from the same
problem.

This behavior will be illustrated with the Lorenz 95 (L95)
model (Lorenz and Emanuel, 1998). It represents a mid-
latitude zonal circle of the atmosphere and is described by
a set of m nonlinear differential equations:

dxj
dt
=
(
xj+1− xj−2

)
xj−1− xj +F, (30)

where xj is the j -th modulo m component of x, m= 40
and F = 8. This equation is integrated using a fourth-order
Runge–Kutta scheme with a time step of δt = 0.05. The dy-
namics of L95 are chaotic; the L95 model’s largest Lyapunov
exponent is λ' 1.7.

Figure 5 shows a typical IEnKS cost function profile in one
direction of the analyzed ensemble space for multiple values
of the DAW parameters. The system is observed at every time
step andH= B= R= Im.

The curves have more and more local extrema as L in-
creases. The curves with the highest amplitudes of the ripples
are found for small values of S. Indeed, an averaging effect
may settle in as the number of observations increases.

This hilly shape causes minimization problems. A pos-
sible minimization procedure for the IEnKS is the Gauss–
Newton (GN) algorithm (e.g., Björck, 1996). GN is not a
global procedure meaning that, depending on the starting
point and the cost function properties, the algorithm can con-

verge towards any local extremum, take many iterations or
even diverge. However, if the cost function is quadratic, the
global minimum is reached in one iteration. The cost func-
tion non-quadraticity is induced by the model nonlinearity.
In the following, we will give a heuristic argument yielding
a bound on the S parameter beyond which the GN method
probably misses the global minimum in the configuration
H= B= R= Im. To some extent, our argument can be seen
as an improvement on the notion of useful DAW length intro-
duced by Pires et al. (1996) beyond which the performance
gain is negligible. In contrast with the useful DAW length,
we account in the following for both the cycling and the non-
linearity.

2.4.2 Effective data assimilation window length

First, the GN convergence properties are drastically simpli-
fied. We assume the method converges to the global mini-
mum if, and only if, the minimization starting point is in a
neighborhood of the global minimizer where the IEnKS cost
function is almost quadratic.

Unfortunately, this minimizer is unknown because the cost
function depends on realizations of many random variables.
In order to eliminate this variability, Pires et al. (1996) in-
troduced a so-called error-free cost function. We prefer an
averaged cost function J∞S in this particular study defined
by

J∞S (w)= lim
N→∞

1
N

N−1∑
k= 0

J
(
w;ykS+L:kS+K ,E

b
kS

)
. (31)

Relying on an ergodicity assumption, Appendix C proves
that this averaged cost function verifies

J∞S (w)=
1
2
‖w‖2+

dS
2
+

1
2

L∑
l=K

E
[∥∥∥δxb

∞S+l

∥∥∥2
]
, (32a)

δxb
∞S+l =Ml

(
xb
∞S +Xb

∞Sw
)
−Ml (x∞S) , (32b)

where the ergodic random variables x∞S , Xb
∞S and x∞S

have been defined in Sect. 2.2 and Appendix C. As seen in
Eq. (32), a sufficient condition for the starting point w = 0 to
be in a neighborhood of the global minimizer where the cost
function is assumed almost quadratic requires that xb

∞S be in
a neighborhood of x∞S where all the

(
Ml

)
K≤l≤L

are almost
linear.

In the univariate case, if the model behavior is almost lin-
ear and unstable, we can use Eq. (26) to estimate the terms in
the sum in Eq. (32) at the starting point w = 0:

E
[∥∥∥δxb

∞S+l

∥∥∥2
]
' α2(S+l−L)α

2
− 1
α2 , (33)

where α is the linear part of the model and the extra S ac-
counts for the propagation. But in a necessarily bounded
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Figure 5. Cost functions of the IEnKS projected in one direction of the analyzed ensemble (hence centered and normalized) with various
DAW parameters S, L. A quasi-static minimization can be visualized from these panels. It begins with the bottom-left cost function; the
orange square is the starting point and the green dot is at the minimum. From the bottom-left cost function up to the top-right cost function,
batches of 9 then 10 observation vectors are progressively added to the DAW, and the minimizer (green dot) is updated accordingly.

physical system, the right-hand side of Eq. (33) cannot grow
indefinitely with l+ S. Such model saturation imposes

E
[∥∥∥δxb

∞S+l

∥∥∥2
]
≤ B, (34)

with B representing a bound. Hence, Eqs. (33) and (34) yield
the following inequality on S:

S ≤ Smax, (35a)

Smax =
ln(B)− ln

(
1−α−2)

2ln(α)
. (35b)

We choose l = L because it corresponds to the most con-
straining case. When Eq. (35a) is violated, xb

∞S departs from
x∞S such that the nonlinearities ofML are significant.

To apply this inequality to the L95 model we choose the
following:

α = lim
N→∞

1
N

N−1∑
k= 0

σ

(
dM
dx

(xk)

)
, (36)

σ being the mean of the singular values greater than 1.
This corresponds to an average of the error amplification by
dM
dx
(x∞S) in the local unstable subspace. We also choose

the average squared norm between two long trajectories for
the bound B:

B = lim
N→∞

1
mN

N−1∑
k= 0

∥∥∥xkS −MkS
(
xb

0

)∥∥∥2
. (37)

This quantity is greater than E
[∥∥δxb

∞S+l

∥∥2
]

because the
IEnKS asymptotic performance is at least better than a free
run. From the values of α and B we find Smax = 14.

Figure 6 shows the filtering and smoothing aRMSEs of an
IEnKS L= S with L95 as a function of S; the performance
strongly deteriorates for S > 16, which is remarkably consis-
tent with our estimation.

Figure 6 also shows another difference with the linear
case: the IEnKS filtering aRMSE depends on S. The former
discussion on the local extrema explains this dependency for
large values of S.

However, for small values of S, the decreasing aRMSE
has not been explained. This is a consequence of the Gaus-
sian background approximation. At each cycle, the IEnKS
uses the background ensemble Eb

kS to estimate the first two
moments of the background pdf and makes the following ap-
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(a)

(b)

Figure 6. Smoothing aRMSE (a) and filtering aRMSE (b) of a
Gauss–Newton IEnKS L= S as a function of S with the L95 model
over 5×105 cycles (logarithmic scale). We used the finite-size ver-
sion (Bocquet, 2011) to account for sampling errors and avoid the
need for inflation,H= R= B= Im, n= 20.

proximation:

p
(
xkS |y(k−1)S+L:K

)
'N

(
xkS |x

b
kS,X

b
kS

(
Xb
kS

)T
)
. (38)

Because the model is nonlinear, this pdf is unlikely to be
Gaussian. Therefore, this approximation results in a loss of
information and the more it is used, the farther from G the
IEnKS cost function is. This is exactly what happens when S
is small: to assimilate the same number of observations, the
IEnKS uses more cycles so that it relies more on the Gaussian
background approximation.

3 Quasi-static algorithms

We have seen in the previous section that the effective DAW
length is constrained by the cost function non-quadraticity. In
this section we review and propose algorithms able to over-
come these minimization issues and reach longer DAWs.

Quasi-static algorithms were introduced by Pires et al.
(1996) in a 4D-Var context. The idea behind QSVA is to
control the way observations are added to the cost function
in order to keep the minimization starting point in the basin
of attraction containing the global minimizer. The method is
carried out by repeating the minimization with an increasing
number of observations: the first minimization is performed
using the cost function with a single observation vector, then
the number of observation vectors is increased and another
minimization can be performed with the former minimizer
as the new starting point. The process is then repeated until
all observations are accounted for.

This procedure is directly applicable to the IEnKS cost
function minimization. The left panel in Fig. 7 is a schematic
of a QS minimization and Algorithm 1 gives the pseudo-code
of an IEnKS with a QS minimization. The new parameters
(Lq)q<NQ control the number of observations added at each
minimization, where NQ is the total number of batches of
observation vectors.

The first three lines initialize the minimization starting
point, the ensemble mean and anomaly matrix. The for loop
in lines 4–23 repeats the QS minimization. The while loop
in lines 6–22 is the Gauss–Newton minimization. Lines 7
and 8 center the ensemble on the current minimizer. Lines
9 and 10 initialize the cost function gradient and the ap-
proximate Hessian. The for loop in lines 12-18 compute the
observation terms of the cost function, the gradient and the
approximate Hessian. Lines 13 and 14 use a finite differ-
ence formula to compute the tangent linear and adjoint of
w 7−→H◦Ml

(
xb

0+Xb
0w
)
. Lines 15 and 16 use this adjoint

to update the gradient and approximate the Hessian. Lines 19
and 20 solve the linear system of the Gauss–Newton algo-
rithm to update the current minimizer. When GN conver-
gence is reached, this minimizer will be used as a starting
point for the next QS minimization. Line 24 updates the en-
semble. Line 25 propagates the updated ensemble to the next
assimilation cycle. Figure 5 illustrates the QS scheme on a
single analysis, as described in the caption.

To cycle the scheme, the DAW is then shifted with a small
S. This ensures minimal cost function deformation, since few
vectors of observation enter and few leave the DAW. This
new cost function is then minimized using the forecast of the
preceding minimizer as a starting point.

To keep this cost function deformation statistically consis-
tent, Bocquet and Sakov (2014) advocate the use of S = 1
and assimilate one observation vector at the end of the DAW,
which avoids multiple assimilation of the same observations.
It is also the easiest way to ensure inequality (Eq. 35a). How-
ever, this method has been shown to be suboptimal because
of the frequent Gaussian background approximations. More-
over, it ultimately fails to be QS since there is only one distant
observation vector per analysis.

An alternative is to keep S = 1 but use all observations in
the DAW and, consequently, relax the conditionK = L−S+
1. This way, observations are assimilated several times. This
is done in the MDA IEnKS (Bocquet and Sakov, 2014). To
keep the statistics consistent, at least in the linear/Gaussian
case, the observations error covariances should be adequately
altered. Hence, the MDA IEnKS is truly a QS scheme and
makes a good reference scheme for our numerical experi-
ments. However, the multiple assimilation of the observa-
tions introduces spurious correlations in the nonlinear/non-
Gaussian case, which entail sub-optimality. A scheme similar
to the IEnKSQS has also been successfully used in Carrassi
et al. (2017) to compute model evidence. Indeed, the effi-
cient computation of model evidence as an integral over the
state space depended on the proper identification of a global
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Figure 7. Schematics of an IEnKSQS minimization (a) and an IEnKSQC minimization (b). The rectangle contains the observations to be
assimilated and the black dots represent the observations used in the current minimization. The “Gauss–Newton” surrounded by arrows
represents the iterations of the Gauss–Newton procedure. The number of quasi-static steps is NQ = 3. The flow of observations is controlled
by the parameters (L0,L1,L2)= (3,5,6). For the QC IEnKS, the number of GN iterations is controlled by the (j0,j1,j2) parameters.

maximum of the integrand. However, its implementation was
based on the update of the ensemble whenever an observation
batch is added to the cost function, which is not as numeri-
cally efficient as the scheme presented here.

The success of the QS minimization lies in the fact that,
when an observation is successfully assimilated, the eMSE
is reduced. Thus, the analysis probability mass concentrates
around the true state. The analysis is then more likely to be
in a neighborhood of the true state where the model is lin-
ear. The cost function non-quadraticity can then be increased
by adding a new term in it. This is confirmed by the follow-
ing argument: let P (q) be the IEnKS asymptotic eMSE at the
qth step of a QS minimization. With the notations and as-
sumptions of Sect. 2.3, i.e., in a linear context, we have the
following recurrence relation:

(
P (q+1)

)−1
=

(
P (q)

)−1
+6

Lq+1
Lq+1, (39a)

P (−1)
= α2S α2

− 1

α
2
(
LNQ−1+1

) . (39b)

Thus, P (q+1) < P (q) and we can increase the cost function
non-quadraticity by adding new terms in it as long as the

propagation of errors does not exceed the bound:

α2Lq+1P (q) ≤ B. (40)

This implies

Lq+1 ≤ Lq + Smax, (41a)
L0 ≤ LNQ−1+ Smax− S, (41b)

which yields S ≤NQSmax. Therefore, the QS minimizations
allow for a NQ times longer DAW.

Unfortunately, these QS minimizations are very expen-
sive. Indeed, they add a third outer loop repeating NQ GN
minimizations. The GN iterations used to compute the inter-
mediate starting points give unnecessary precision; all that
is required for these starting points is to be in a neighbor-
hood of x∞S where the model is almost linear. Thus, one
can restrain the number of intermediate GN loops and save
the full convergence to the last minimization. This is done
in the quasi-convergent IEnKS (IEnKSQC) with the parame-
ters (jq)q<NQ . These parameters correspond to the numbers
of GN loops in the intermediate QS minimizations. They are
typically equal to 1 except for the last one. Algorithm 2 gives
the pseudo-code of the IEnKSQC and the right panel in Fig. 7
is a schematic for it.

www.nonlin-processes-geophys.net/25/315/2018/ Nonlin. Processes Geophys., 25, 315–334, 2018



www.manaraa.com

326 A. Fillion et al.: Quasi-static ensemble variational data assimilation

Algorithm 1 One cycle of the IEnKSQS

Require: Eb
0 the background ensemble at t0; λ the inflation; (Lq)q<NQ

a list
of DAW time indexes; ε the finite differences step; δ, jmax GN end of loop
parameters; 1 = (1, . . . , 1)

T ∈ Rn and I is the identity of Rn.
1: wa

0 = 0
2: x̄b

0 = Eb
01/n

3: Xb
0 = λ

(
Eb

0 − x̄b
01

T
)

4: for q = 0...NQ − 1 do
5: j = 0
6: repeat
7: x̄a

0 = x̄b
0 + Xb

0w
a
0

8: E0 = x̄a
01

T + εXb
0

9: ∇J = (n− 1)wa
0

10: ∇̃2J = (n− 1)I
11: EK =MK (E0)
12: for l = K, ..., Lq do
13: ȳl = H (El)1/n
14: Yl =

(
H (El)− ȳl1

T
)
/ε

15: ∇J = ∇J −YT
l R

−1 (yl − ȳl)

16: ∇̃2J = ∇̃2J −YT
l R

−1Yl

17: El+1 =M (El)
18: end for
19: solve ∇̃2Jδw = ∇J
20: wa

0 = wa
0 − δw

21: j = j + 1
22: until ||δw|| ≤ δ or j ≥ jmax

23: end for
24: Ea

0 = xa
01

T +
√
n− 1Xb

0∇̃2J−1/2

25: Eb
S =MS (Ea

0)

4 Numerical experiments with low-order models

In the following, we perform numerical experiments with the
Lorenz 1963 (L63) and Lorenz 1995 (L95) models. L95 has
already been presented in Sect. 2.4. L63 (Lorenz, 1963) is a
simplified model for atmospheric convection. It is defined by
the following ordinary differential equations:

dx
dt
= σ (y− x), (42a)

dy
dt
= ρx− y− xz, (42b)

dz
dt
= xy−βz. (42c)

These equations are integrated using a fourth-order Runge–
Kutta scheme with a time step of δt = 0.01 and (σ,ρ,β)=
(10,28,8/3). The dynamics of the L63 model are chaotic,
with a largest Lyapunov exponent given by λ' 0.91.

Both models are assumed perfect. The truth run is gener-
ated from a random state space point. The initial ensemble is
generated from the truth with B= Im where m= 40,3 and
n= 20,3 for L95 and L63, respectively. Observation vec-
tors are generated from the truth with H= R= Im every
1t = 0.05 for L95 and every 1t = 0.02 for L63. A burn-in
period of 5× 103

×1t is enforced in both cases.

The IEnKS parameters are ε = 10−4, δ = 10−3, jmax =

20, NQ = 1, L0 = L. For the IEnKSQS, the QS parameters
are

(
L0,L1, . . .,LNQ−1

)
=K +

(
0,1, . . .,NQ− 1

)
×

S−1
NQ−1 .

For the IEnKSQC, the QS parameters are the same and, in ad-
dition,

(
j0, . . ., jNQ−2,jNQ−1

)
= (1, . . .,1,20). Sampling er-

rors are systematically accounted for using the IEnKS finite-
size version (Bocquet, 2011; Bocquet and Sakov, 2012; Boc-
quet et al., 2015) which avoids the need for inflation and its
costly tuning. Finally the aRMSE is averaged over a number
of cycles which is determined by the number of observations
assimilated. We use 5× 105 observation vectors for L95 and
5× 106 observation vectors for L63.

Unlike Goodliff et al. (2015), our numerical experiments
neither address increasing nonlinearity, nor do they address
the use of climatological background error covariance ma-
trices. Instead, we focus exclusively on the IEnKS perfor-
mance dependence on the DAW key parameters L, S and
the number NQ of QS minimizations. Goodliff et al. (2015)
numerically evaluates the QSVA approach with hybrid and
EnVar techniques, similarly to Bocquet and Sakov (2013),
and confirms the findings of Pires et al. (1996) albeit in a En-
Var context. In terms of accuracy, Goodliff et al. (2015) show
that the ensemble transform Kalman smoother (ETKS) out-
performs all hybrid schemes in their numerical experiment.
Since the IEnKS systematically outperforms the ETKS in all
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Algorithm 2 One cycle of the IEnKSQC

Require: Eb
0 the background ensemble at t0; λ the inflation; (Lq)q<NQ

a list of
DAW time indexes; (jq)q<NQ

the number of intermediate GN loops; ε the

finite differences step; δ GN end of loop parameter; 1 = (1, . . . , 1)
T ∈ Rn

and I is the identity of Rn;
1: wa

0 = 0
2: x̄b

0 = Eb
01/n

3: Xb
0 = λ

(
Eb

0 − x̄b
01

T
)

4: for q = 0...NQ − 1 do
5: j = 0
6: repeat
7: x̄a

0 = x̄b
0 + Xb

0w
a
0

8: E0 = x̄a
01

T + εXb
0

9: ∇J = (n− 1)wa
0

10: ∇̃2J = (n− 1)I
11: EK =MK (E0)
12: for l = K, ..., Lq do
13: ȳl = H (El)1/n
14: Yl =

(
H (El)− ȳl1

T
)
/ε

15: ∇J = ∇J −YT
l R

−1 (yl − ȳl)

16: ∇̃2J = ∇̃2J −YT
l R

−1Yl

17: El+1 =M (El)
18: end for
19: solve ∇̃2Jδw = ∇J
20: wa

0 = wa
0 − δw

21: j = j + 1
22: until ||δw|| ≤ δ or j ≥ jq
23: end for
24: Ea

0 = xa
01

T +
√
n− 1Xb

0∇̃2J−1/2

25: Eb
S =MS (Ea

0)

conditions (Bocquet and Sakov, 2013, 2014) as long as the
DAW length is not excessively long (for a chaotic model),
then one concludes that our RMSEs would be systematically
equal to or smaller than those reported for any hybrid scheme
in Goodliff et al. (2015).

Figures 8 and 9 show the aRMSE of the IEnKS and
IEnKSQS for both L95 and L63 as a function of S and L.
The smoothing and filtering performance of the IEnKS in-
creases for small values of L, S then decreases for high val-
ues of L,S. This is due to the appearances of local minima.
As noted by Goodliff et al. (2015) with L63, the QS variant
allows one to reach much longer DAWs, and improves the
performance. However, some limits to the L95 model method
are visible with when, for L= 50, best smoothing aRMSEs
are reached for S < 50. However, the IEnKSQS filtering per-
formance is invariant with L and improves with S as in the
4D-Var filtering performance shown in Fig. 3. As suggested
by Pires et al. (1996), one may be tempted to estimate the
useful DAW length from past observations beyond which
the performance gain is negligible. However, their study es-
timated useful DAW length in a one-cycle 4D-Var context
with a focus on the filtering RMSE. Hence, this estimation
is not directly relevant for a cycled IEnKSQS. By contrast,
in this study, a lot of observations have already been assimi-

lated and condensed in the background approximation. Thus,
the performance gain with the DAW length comes from the
precision of this Gaussian background approximation; a pre-
cision that the linearized theory is not able to provide, at-
tested to by the filtering (l = L) performance independence
of Eq. (26) with the DAW parameters.

Figure 10 compares the smoothing aRMSE (first column),
the filtering aRMSE (second column) and the number of en-
semble propagations (third column) of the IEnKSQS (NQ =
S,S = L), the IEnKS (S = L) and the IEnKS-MDA (S = 1),
for both L95 and L63 as a function of L. The number of en-
semble propagations is the total number of ensemble prop-
agations in units of 1t divided by the total number of as-
similated observation vectors. For L < 20, all three algo-
rithms show smoothing and filtering performance improve-
ments withL. ForL > 20, the IEnKS filtering and smoothing
RMSEs increase because of the multiple local extrema. For
L < 40, the IEnKSQS has smaller aRMSEs than the IEnKS-
MDA. Because the IEnKSQS is SDA by design, it does not
suffer from sub-optimality related to multiple assimilations
and nonlinearity. Moreover, the IEnKSQS always requires
less propagations of the ensemble, which improves the com-
putational cost. However, for L > 40 with the L95 model,
the quasi-static approach cannot sustain the nonlinearity any-
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Figure 8. IEnKS (lower triangles) and IEnKSQS (upper triangles, NQ = S) smoothing and filtering aRMSEs as a function of L and S with
the L95 model. The L parameter is on the abscissa axis for the IEnKS and on the ordinate axis for the IEnKSQS. The S parameter is on the
abscissa axis for the IEnKSQS and on the ordinate axis for the IEnKS. For readability, smoothing RMSE beyond 0.10 and filtering RMSE
beyond 0.20 are in the same color and the scale is logarithmic.
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more and the IEnKSQS aRMSE degrades. Hence, the IEnKS-
MDA S = 1 still has the best performance. With the L63
model, the IEnKSQS is always better than the IEnKS-MDA
suggesting that L could still be increased.

Figure 11 compares the smoothing aRMSE (first column),
the filtering aRMSE (second column) and the number of
ensemble propagations (third column) of the IEnKSQS and
IEnKSQC as a function of the NQ parameter. The IEnKSQS
aRMSE quickly decreases after a point for both algorithms

and for both models. Before this point, the algorithms fail to
find the global minimum and the RMSE is close to the clima-
tological variance. After this point, the algorithms succeed in
finding the global minimum and the RMSE is low. For the
IEnKSQS with the L95 model, this point can be estimated us-
ing results of Sect. 3 by S/Smax ' 3.6, in remarkable agree-
ment with Fig. 11. This point comes later for the IEnKSQC
but it demands less ensemble propagations making this algo-
rithm numerically more efficient than the IEnKSQS. However
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those ensemble propagations have different behavior for the
L95 and L63 models when the minimizations fail to find the
global minimum. For the L95 model, the number of ensem-
ble propagations is high meaning that the minimization takes
a lot of iterations and fails to converge. For the L63 model,
the number of ensemble propagations is low indicating that
minimizations converge but to a non-global extrema.

5 Conclusions

In this paper, we have extended the study of Pires et al.
(1996) on quasi-static variational data assimilation, focused
on 4D-Var technique, to cycled data assimilation schemes
and specifically four-dimensional nonlinear ensemble vari-
ational techniques, an exemplar of this being the iterative en-
semble Kalman smoother (IEnKS).

The long term impact of cycling was first theoretically
investigated in a linear context for 4D-Var and the IEnKS,
then numerically for the IEnKS in a nonlinear context. The
way information is propagated between data assimilation
cycles indeed explains the difference between 4D-Var and
the IEnKS. Both reveal performance improvements with the
DAW parameter S, which counts the number of observation
vectors within the DAW, as well as the time shift between
cycles. This is a consequence of the Gaussian background
approximation; the larger S is, the less the assimilation relies
on it.

However, it is observed that this improvement has a limit
in the chaotic, perfect model case. The cost function global
minimum basin of attraction appears to shrink with increas-
ing L. This causes the Gauss–Newton procedure to miss the
cost function global minimum, which deteriorates the assim-
ilation performance.

Quasi-static minimizations lead slowly but surely to the
global minimum by repeated cost function minimizations. As
the DAW length L is gradually increased, the starting point
of the minimization remains in the global minimum basin
of attraction. For most S,L couples, the quasi-static IEnKS
turns out to be a more accurate substitute for the multiple
data assimilation IEnKS (IEnKS-MDA).

Unfortunately, this method (IEnKSQS) adds an outer loop
which could significantly increase the numerical cost. Pre-
cision on intermediate minima being superfluous, one can
limit the intermediate Gauss–Newton number of loops. The
unavoidable space increments required to minimize the non-
quadratic cost function are thus reported in time in the quasi-
convergent IEnKS (IEnKSQC).

We did not focus on the applicability of the methods to
high-dimensional and imperfect models. In particular, we
considered very long DAWs, which, even if of high mathe-
matical interest or for low-order reliable models, is less rele-
vant for significantly noisy models. However, we know from
Swanson et al. (1998), that the perfect model results are ex-
pected to extend to the imperfect model case provided that
the growth rate of the model error is similar to that of the
leading Lyapunov vectors of the model. This is likely to also
apply to a (strong-constraint) IEnKSQS. Finally, an extension
to this work would therefore consist in investigating the same
ideas but using a weak constraint 4D-Var and IEnKS (Trémo-
let, 2006; Sakov and Bocquet, 2018; Sakov et al., 2018).

Data availability. No data sets were used in this article.
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Appendix A: Performance of 4D-Var in the linear,
univariate case

The objective of this Appendix is to establish a recurrence
relation between the 4D-Var eMSE of each cycle. From this
relation we will get an expression for the 4D-Var asymptotic
eMSE.

We assume m= 1 andMl(x)= αlx. At the kth cycle, the
gradient and Hessian of the 4D-Var cost function Eq. (7) are

∇J
(
xkS;y:,x

b
kS

)
=−

1
b

(
xb
kS − xkS

)
−
h

r

L∑
l=K

αl
(
ykS+l −hα

lxkS

)
, (A1)

∇
2J
(
xkS;y:,x

b
kS

)
=

1
b
+
h2

r

L∑
l=K

α2l, (A2)

where ykS+L:kS+K is temporarily denoted y:. Because of the
operators’ linearity, J is quadratic with respect to xkS and
convex. Hence, its minimizer xa

kS exists and is characterized
by the null gradient equation:

∇J
(
xa
kS;y:,x

b
kS

)
= 0. (A3)

With an exact Taylor expansion around the state xkS we ob-
tain the following:

0=∇J
(
xkS;y:,x

b
kS

)
+∇

2J
(
xkS;y:,x

b
kS

)
×
(
xa
kS − xkS

)
. (A4)

Note that ∇2J
(
xkS;y:,x

b
kS

)
, given by Eq. (A2), is not ran-

dom and does not depend on xkS,y:,xb
kS . That is why it is

simply noted ∇2J . Using Eqs. (1) and (A4), we have

∇
2J ·

(
xa
kS − xkS

)
=

1
b

(
xb
kS − xkS

)
+
h

r

L∑
l=K

αlεkS+l . (A5)

The random variable xb
kS − xkS = α

S
(
xa
(k−1)S − x(k−1)S

)
is

independent from the errors εkS+K , . . .,εkS+L. Thus, taking
the expectation of the square of Eq. (A5) gives the following
expression for the eMSE P 4D-Var

kS of 4D-Var at time tkS :

P 4D-Var
kS = E

[(
xkS − x

a
kS

)2]
,

=

(
∇

2J
)−2

(
α2S

b2 P
4D-Var
(k−1)S +

h2

r

L∑
l=K

α2l

)
, (A6a)

P 4D-Var
−S = b. (A6b)

Introducing the notation

6LK =
h2

r

L∑
l=K

α2l
=
h2

r
α2K α

2S
− 1

α2− 1
, (A7)

1=
α2S(

1+ b6LK
)2 , (A8)

we obtain

P 4D-Var
kS =1P 4D-Var

(k−1)S +
6LK(

1
b
+6LK

)2 . (A9)

Thus,
(
P 4D-Var
kS

)
k

is an arithmetico-geometric sequence. Its
limit P 4D-Var

∞S depends on the value of1 in the following way:

P 4D-Var
∞S =

{
∞ if 1 ≥ 1,
b26LK
α2S

1
1−1 otherwise.

(A10)

The generalization to any asymptotic eMSE with lag L− l is
straightforward:

P 4D-Var
∞S+l =

{
∞ if 1 ≥ 1,
b26LK
α2(S−l)

1
1−1 otherwise.

(A11)

In the multivariate, diagonal case the algebra can be con-
ducted on each direction independently. The eMSE in this
case is the sum of the univariate eMSEs of each direction.

Appendix B: Performance of the IEnKS in the linear,
univariate case

The objective of this appendix is to establish a recurrence
relation between the IEnKS eMSE of each cycle. From this
relation we will get an expression for the IEnKS asymptotic
eMSE.

First, it is proven by recurrence that for all k ≥ 0,
G(xkS |ykS+L:K) is Gaussian with moments

E
[
xkS |ykS+L:K

]
= xa

kS, (B1)

V
[
xkS |ykS+L:K

]
=
(
Xa
kS

)2
, (B2)

where V is the variance of a random variable and xa
kS,X

a
kS

are defined by Eqs. (15) and (16). Because of the assumptions
Eqs. (25c) and (25d) with Eq. (13) one gets

G(x0|yL:K)= J
(
w0;yL:K ,Eb

0

)
+ c0, (B3)

where c0 is a constant independent from x0 and w0.
Hence, G(x0|yL:K) is Gaussian and its moments are
given by Eqs. (B1) and (B2) with k = 0. Now, as-
sume G(xkS |ykS+L:K) is Gaussian with moments given by
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Eqs. (B1) and (B2) for a k ≥ 0. Because x(k+1)S =MS (xkS)

withM affine, one gets

E
[
x(k+1)S |ykS+L:K

]
=MS

(
xa
kS

)
= xb

(k+1)S, (B4)

V
[
x(k+1)S |ykS+L:K

]
= α2S(Xa

kS

)2
=Xb

(k+1)S, (B5)

using the conditional expectation properties and Eqs. (25a)
and (25b). This result together with Eq. (6) and assumption
Eq. (13) yields

G
(
x(k+1)S |y(k+1)S+L:K

)
(B6)

= J
(
w(k+1)S;y(k+1)S+L:(k+1)S+K ,Eb

(k+1)S

)
+ ck+1,

where ck+1 is a constant independent from x(k+1)S and
w(k+1)S . Hence G

(
x(k+1)S |y(k+1)S+L:K

)
is Gaussian with

moments given by Eqs. (B1) and (B2).
The conditional variance Eq. (B2) is therefore related to

the IEnKS performance by the total law of expectation:

P IEnKS
kS = E

[(
xa
kS − xkS

)2]
,

= E
[
E
[(
xa
kS − xkS

)2
|ykS+L:K

]]
,

= E
[
V
[
xkS |ykS+L:K

]]
,

= E
[(
Xa
kS

)2]
. (B7)

Then, from Eq. (16) we get the recurrence relation:

(
Xa
(k+1)S

)−2
= α−2S(Xa

kS

)−2
+
h2

r

L∑
l=K

α2l, (B8a)

(
Xa

0
)−2
=

1
b
+
h2

r

L∑
l=K

α2l . (B8b)

Thus, Xa
kS is not random and P IEnKS

kS =
(
Xa
kS

)2. Equa-
tion (B8) shows that the sequence of inverse IEnKS eMSEs
is arithmetico-geometric:(
P IEnKS
kS

)−1
= α−2S

(
P IEnKS
(k−1)S

)−1
+6LK , (B9a)(

P IEnKS
−S

)−1
= b−1, (B9b)

where the notation Eq. (A7) has been used. Properties of
arithmetico-geometric sequences allow one to obtain the
IEnKS asymptotic eMSE:

P IEnKS
∞S =

{
0 if |α| ≤ 1,
r

h2α2L
α2
−1
α2 otherwise,

(B10)

and the generalization to asymptotic eMSEs with lag L− l is
straightforward:

P IEnKS
∞S+l =

{
0 if |α| ≤ 1,

r

h2α2(L−l)
α2
−1
α2 otherwise.

(B11)

Let us now show that the IEnKS eMSE is optimal. Let
xa
kS (ykS+L:K) be the 4D-Var analysis or any other function

of ykS+L:K . A bias–variance decomposition (e.g., Bishop,
2006) of this estimator yields

ExkS ,ykS+L:K
[(
xkS − x

a
kS

)2]
= EykS+L:K

[
VxkS

[
xkS |ykS+L:K

]]
+EykS+L:K

[(
ExkS

[
xkS |ykS+L:K
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− xa

kS

)2]
. (B12)

Replacing the moments with Eqs. (B1) and (B2) yields

P 4D-Var
kS = P IEnKS

kS +E
[(
xa
kS − x

a
kS

)2]
.≥ P IEnKS

kS . (B13)

In the multivariate, diagonal case the algebra can be con-
ducted on each direction independently. Thus, the eMSE in
this case is the sum of the univariate eMSEs of each direc-
tion.

Appendix C: Expression of the averaged cost function

The IEnKS averaged cost function J∞S is the N goes to∞
limit of

1
N

N−1∑
k= 0

J
(
w;ykS+L:kS+K ,E

b
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Expanding the squared norm around H ◦Ml (xkS) using
Eq. (1) gives

1
2
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(C2)

where δykS+l =H ◦Ml (xkS)−H ◦Ml
(
xb
kS +Xb

kSw
)
. We

assume that random variables exist
(
ε∞S,x∞S,Ea

∞S

)
whose

distribution is invariant and ergodic with respect to the shift
transformation:
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Then because the (εkS)k are mutually independent, inde-
pendent from the
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)
k

and identically distributed,
p
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ε∞S,x∞S,Ea
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)
= p(ε0)p

(
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)
. By Birkhoff’s

ergodic theorem (see Walters, 1982) we get
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1
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where δy∞S+l =H ◦Ml (x∞S)−H ◦Ml
(
xb
∞S +Xb

∞Sw
)

and xb
∞S,X

b
∞S are respectively the mean and normalized

anomaly ofMS
(
Ea
∞S

)
. Finally,

J∞S (w)=
1
2
‖w‖2+

dS
2
+

1
2

L∑
l=K

E
[∥∥δy∞S+l∥∥2

R−1

]
. (C7)
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